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Abstract—This paper studies the optimal memory-load trade-
off in a coded caching system with K = 3 users under the
constraint that the contents in the local caches are the result of
encoding the files by a linear code. This setting generalizes past
work that had established the optimal tradeoff under uncoded
placement. Let N be the number of files.

For K = N = 3 the optimal tradeoff under linear coded place-
ment is shown to have a corner point in the low memory regime
that was unknown before this work, which is actually optimal
without any restrictions on the placement. For K = 3,N ≥ 4,
the optimal tradeoff under linear coded placement is shown to
be attained by uncoded placement. As a consequence of this
result together with past optimality results, it is an open ques-
tion whether non-linear coded placement would outperform the
tradeoff derived in this work for the memory regime M ∈ (1/2, 1)
for N = 3, and M ∈ (0,N/3) for K = 3,N ∈ {4, 5}.

Index Terms—Coded Caching; Converse Bound; Acheivable
Scheme; Linear Coding Placement; Optimal Tradeoff.

I. INTRODUCTION

We consider an error-free broadcast network with K users,
each equipped with a local cache of size M files, and a central
server that stores N files. After the server has pushed content
into the local caches and has received the file requests from the
the users, it transmits coded multicast messages with the goal
of reducing the network communication load by leveraging the
locally cached contents. This technique, called coded caching,
was originally introduced by Maddah-Ali and Niesen [1].
Coded caching has the potential to reduce the network load
by trading local cache storage for network bandwidth [1].

a) Relevant Past Work: In [1], a cut-set converse bound
and an achievable scheme (referred to as MAN in the follow-
ing) where content is cached uncoded were proposed; while
these bounds do not coincide in general, they are to within
a constant factor of one another. Wan et al. in [2] derived a
converse bound when the caches are populated with uncoded
content, and shown it to be achievable when there are more
files than users; it is also achievable for less files than users [3].
Yu et al. showed that coded placement can at most reduce the
load under uncoded placement by a factor of two [4]. While the
optimal placement is unknown for general system parameters,
linear coded placement (LinP) is known to improve over
uncoded placement in the low memory regime [1].

To the best our knowledge, the optimal memory-load trade-
off is known in the following cases.

• For min{N,K} = 1 MAN, or uncoded transmission, is
optimal [1].

• Two users:
– the case N = K = 2 was already characterized in [1],

showing that uncoded placement is insufficient but that
LinP is optimal.

– the case N > K = 2 was rather recently solved by Tian
in [5], showing that MAN is optimal.

• Three users:
– for N = 2 and K = 3, LinP is optimal [5].
– for N = K = 3, LinP is known to be optimal, except

for the regime M ∈ (1/3, 1) that is open at the time of
writing this paper [5].

– for N ∈ {4, 5} and K = 3, MAN is optimal, except for
the regime M ∈ (0,N/3).

– for K = 3 and N ≥ K(K+ 1)/2 = 6, MAN is optimal
for the whole memory regime [4].

• The case N = 2,K ≥ 4 was partially characterized in [5],
showing that MAN is optimal in the large memory regime
M ≥ 2(1− 2/K).

• In general, MAN is optimal in the large memory regime
M ≥ N(1− 1/K) [1].

• In general, Chen et al. [6] showed that LinP is optimal
for N ≤ K and M ≤ 1/K.

From the above listed optimality results, one is tempted
to conjecture that LinP is optimal, or at least for the few
remaining open memory regimes in the K = 3 user case. This
is the focus of this paper.

b) Main Contributions: Inspired by a recent line of work
by Yu and Jafar [7] on the capacity of the Linear Computation
Broadcast Channel (LCBC) with three users, we derive a lower
bound on the memory-load tradeoff under LinP for the coded
caching problem with K = 3 users. We show that this lower
bound is achievable. Important observations from this result:

a) case N = 3: a new optimal memory-load point in the
low memory regime is discovered, which was unknown
from the work in [5]. In this case, the optimal placement
remains open for M ∈ (1/2, 1), where only a non-linear
coded placement could possibly beat the optimal tradeoff
we characterized under LinP in this work.

b) case N ≥ 4: uncoded placement is optimal under LinP.
In this case, the optimal placement remains open for N ∈
{4, 5} when M ∈ (0,N/3), where only a non-linear coded
placement could possibly beat the optimal tradeoff we
characterized under LinP in this work.



c) Paper Organization: This paper is organized as fol-
lows. Section II introduce the coded caching problem and
summarizes relevant results. Section III presents our main
result. Section IV introduces the LCBC model to re-derive
the optimality of LinP for the case of K = 2 users. Section V
proves the optimal memory-load tradeoff under LinP for the
case of K = 3 users. Section VI concludes the paper. Some
proofs can be found in Appendix.

d) Notation Convention: We use the following notations:
• Calligraphic symbols denote sets, bold lowercase symbols

vectors, bold uppercase symbols matrices, and sans-serif
symbols system parameters.

• | · | is the cardinality of a set or the length of a vector.
• For integers a and b,

(
a
b

)
is the binomial coefficient, or 0

if a ≥ b ≥ 0 does not hold.
• For an integer b, we let [b] := {1, . . . , b}.
• For sets S and Q, we let S \ Q := {k : k ∈ S, k /∈ Q}.
• For a collection {Z1, . . . Zn} and a index set S ⊆ [n],

we let ZS := {Zi : i ∈ S}.
• For a set G and an integer t, we let Ωt

G := {T ⊆ G :
|T | = t}.

II. PROBLEM FORMULATION AND KNOWN RESULTS

A. Problem Formulation

A (N,K) coded caching system includes a server, K users,
and N files. Each file has B symbols, which are uniformly and
independently distributed over Fq, where q is a prime-power
number. Files are denoted as Fi ∈ FB

q , i ∈ [N]. All users are
connected to the server via an error-free shared link. The coded
caching system has two phases: placement and delivery. Each
user has a cache, which stores no more than MB symbols;
we refer to M as the memory size. Caches are filled during
the placement phase without knowledge of future demands.
During the delivery phase, users communicates to the server
their demands and the server transmits a message X of no
more than RB symbols; we refer to R as the load.

Mathematically, the cache content of user k is denoted by
Zk ∈ FMB

q and satisfies

H(Zk|F1, . . . , FN) = 0, ∀k ∈ [K]. (1)

In the delivery phase, each user demands a file from the server.
Denote the demand of user k as dk ∈ [N], k ∈ [K]. After the
demands are known, the server transmits a message X ∈ FRB

q

to the users, where

H(X|d1, . . . , dK, F1, . . . , FN) = 0. (2)

All users must decode their desired file correctly from the local
cached content and the transmitted message, i.e.,

H(Fdk
|X,Zk) = 0, ∀k ∈ [K]. (3)

The goal is to characterize the worst-case load (or simply load
in the following), defined as

R⋆(M) = lim sup
B,q

min
X,Z1,...,ZK

max
d1,...,dK

{R : is achievable with cache size M}, M ∈ [0,N]. (4)

B. Linear Coded Placement

Denote by F := [F1; . . . ;FN] ∈ FNB
q the column vector

that contains all the symbols of all the files. In this work we
consider linear coding placement (LinP), that is, in (1) we
restrict the cached contents to be of the form

LinP: Zk = ẼkF ∈ FMB
q , ∀k ∈ [K], (5)

where Ẽk ∈ FMB×NB
q is the cache encoding matrix for user k.

We do not restrict the encoding for the delivery message in (2)
or the decoding in (3) to be linear.

The optimal load in this case is defined as in (4) but with
the LinP constraint in (5) (instead of (1)), and is denoted as
R⋆

LinP(M). Trivially,

R⋆(M) ≤ R⋆
LinP(M) ≤ RYMA(M), (6)

where RYMA is the optimal load under uncoded placement [3],
i.e., each row in each cache encoding matrix in (5) has at most
one non-zero entry. The YMA scheme is introduced next.

C. YMA Scheme and Optimality Under Uncoded Placement

Fix t ∈ [0 : K] and partition each file into
(
K
t

)
equal-size

subfiles as

Fi = {Fi,W ∈ FB/(Kt)
q : W ∈ Ωt

[K]}, ∀i ∈ [N]. (7)

The cache contents are

Zk = {Fi,W : i ∈ [N],W ∈ Ωt
[K], k ∈ W}, ∀k ∈ [K]. (8)

The memory size is M = N
(
K−1
t−1

)
/
(
K
t

)
= Nt/K.

Given demands (d1, . . . , dK), the server constructs the coded
multicast messages

XS :=
∑
k∈S

αS,kFdk,S\{k}, ∀S ∈ Ωt+1
[K] , (9)

where αS,k ∈ Fq is a coefficient chosen as in [8], [9]. Some
of the multicast messages in (9) are linearly dependent on the
others when a file is requested by multiple users [3], [8], [9].
Let L ⊆ [K] be the set of leader users, which contains one
user per each demanded file. The server sends

X = {XS : S ∈ Ωt+1
[K] ,S ∩ L ̸= ∅} ∪ {d1, . . . , dK,L}, (10)

which enables successful decoding at each user [3].
Thus, the points

(Mt,Rt)YMA :=

(
N

(
K−1
t−1

)(
K
t

) ,

(
K

t+1

)
−
(
K−min(K,N)

t+1

)(
K
t

) )
, (11)

for t ∈ [0 : K] are achievable. When K ≤ N, (11) reduces to
the MAN scheme [1], namely

(Mt,Rt)MAN :=

(
N
t

K
,
K− t

1 + t

)
, t ∈ [0 : K]. (12)

Theorem II.1 (From [3]). The optimal tradeoff for the coded
caching problem under uncoded placement is the lower convex
envelope of the points in (11). □



D. Known Optimality Results for K = 2 Users

Theorem II.2 (From [1]). Any optimal memory-load tradeoff
pair for N = K = 2 satisfies

2M+ R ≥ 2, 2M+ 2R ≥ 3, M+ 2R ≥ 2. (13)

The first non-trivial corner point in (13) is (1/2, 1) and is
attained by LinP; while the second and last non-trivial corner
point is (1, 1/2) attained by MAN. □

The first non-trivial corner point in (13) is a special case of
the following general result by Chen at al [6].

Theorem II.3 (From [6]). For N ≤ K, the segment connecting
points (M,R)trivial = (N, 0) and

(M,R)CFL = (1/K,N(1− 1/K)), (14)

is optimal and is achieved by LinP. □

Theorem II.4 (From [5]). Any optimal memory-load tradeoff
pair for N > K = 2 satisfies

3M+ NR ≥ 2N, M+ NR ≥ N. (15)

The only non-trivial corner point in (15) is (N/2, 1) and is
attained by MAN. □

E. Known Optimality Results for K = 3 Users

Theorem II.5 (From [5]). Any optimal memory-load tradeoff
pair for N = 2 < K = 3 satisfies

2M+ R ≥ 2, 3M+ 3R ≥ 5, M+ 2R ≥ 2. (16)

The first non-trivial corner point in (16) is attained by LinP
in Theorem II.3, while the remaining one by MAN. □

Theorem II.6 (From [5]–converse without any restrictions on
the placement). Any memory-load tradeoff pair for N = K =
3 must satisfy

3M+ R ≥ 3, 6M+ 3R ≥ 8, (17a)
M+ R ≥ 2, (17b)
2M+ 3R ≥ 5, M+ 3R ≥ 3. □ (17c)

Remark 1. The first non-trivial corner point in (17) is attained
by LinP in Theorem II.3 and gives optimality for M ≤ 1/3;
MAN is optimal for M ≥ 1. The second non-trivial corner
point in (17) is (2/3, 4/3), and is the only one that provably
cannot be achieved by LinP [5]. Thus, based on past work,
the optimal scheme for for N = K = 3 in the memory regime
M ∈ (1/3, 1) is at present unknown and may require non-
linear coded placement.

Theorem II.7 (From [4]). The optimal tradeoff for N ≥ 6
and K = 3 is attained by MAN.

Remark 2. For the K = 3 user case, Theorems II.5, II.6
and II.7 do not cover the whole memory regime when there
are N = 4 or N = 5 files. Thus, based on past work, the cases
N ∈ {4, 5} files for K = 3 users are at present open in the
memory regime M < N/3.

III. MAIN RESULTS

With reference to Remarks 1 and 2, the goal of this paper
is to shed some light into the optimal placement in the
open memory regimes for the coded caching problem with
K = 3 users. In particular, we aim to characterize what can
be ultimately attained by LinP, and compare it with what is
attainable with uncoded placement in Theorem II.1.

To address this question, in Section IV, we first revisit the
case of K = 2 users and re-derive the results in Theorems II.2
and II.4 by leveraging the recent line of work in [10] on the
capacity of the LCBC with two users. Our aim is to introduce
the methodology and the notation in a case where the notation
is easier to grasp. In Section V, we leverage the result in [7]
on the capacity of the LCBC with three users, and then to
show the following optimal tradeoff under LinP.

Theorem III.1 (New result: Optimal Tradeoff under LinP for
N = K = 3). Any memory-load tradeoff pair for N = K = 3
under LinP satisfies

3M+ R ≥ 3, 6M+ 3R ≥ 8, (18a)
4M+ 3R ≥ 7, (new bound) (18b)
2M+ 3R ≥ 5, M+ 3R ≥ 3. (18c)

The first non-trivial corner point in (18) is (1/3, 2) which
is attained by LinP in Theorem II.3; the second non-trivial
corner point is (1/2, 5/3) which is attained by a novel LinP
scheme described in Section V; the last two non-trivial corner
points are attained by MAN. □

Theorem III.2 (New result: Optimal Tradeoff under LinP for
N > K = 3). The optimal tradeoff for N > K = 3 under LinP
is attained by MAN. □

Remark 3. For the case of N = K = 3, the difference
between the converse bound in Theorem II.6 and our optimal
tradeoff under LinP in Theorem III.1 is the ‘middle bound’
(namely, (17b) vs (18b)). We stress that the point (1/2, 5/3)
in (18) is not contained in Theorem II.6 and is not achieved by
Theorem II.3 either. In addition, this point is actually optimal
without any restrictions on the placement, as point (1/2, 5/3)
meets with equality the converse bound 6M+3R ≥ 8 in (17a).

The discovery of the new optimal point (1/2, 5/3) is a major
contribution of this work. This discovery shrinks the memory
range for which optimality is unknown from M ∈ (1/3, 1) to
M ∈ (1/2, 1). At this point, for the case of N = K = 3, we
conclude that no known achievable scheme meets the converse
bound in Theorem II.6 for M ∈ (1/2, 1). Any improvement on
our LinP optimality result in Theorem III.1 for M ∈ (1/2, 1)
could only come from non-linear coded placement.

Similarly, for the case of K = 3 < N ≤ 5, any im-
provement on our LinP optimality result in Theorem III.2
for M ∈ (0,N/3) could only come from non-linear coded
placement. □



IV. WARM-UP: PROOF OF THEOREMS II.2 AND II.4

Here we leverage the results of [10] for the LCBC with
two users to re-derive the results in Theorems II.2 and II.4.
We start by introducing matrix notations from [7], [10].

A. Some Matrix Notation

In the rest of the paper, given a matrix M, we let ⟨M⟩
denote the subspace spanned by the columns of M, and rk(M)
the rank of M.

Given two matrices M1 and M2, we use a Matlab-like
notation where [M1,M2] denotes the concatenated matrix
which can be partitioned column-wise into M1 and M2,
while [M1;M2] denotes the concatenated matrix which can be
partitioned row-wise into M1 and M2. In addition, M1∩M2

denotes a matrix whose columns span ⟨M1⟩ ∩ ⟨M2⟩; and
M1 \M2 is the subspace in ⟨M1⟩ but not in ⟨M2⟩

Given two matrices M1 and M2, we define the conditional
rank as follows [10]

rk(M1 | M2) := rk([M1;M2])− rk(M2) (19)
= rk(M1)− rk(M1 ∩M2). (20)

Given three matrices M1,M2 and M3, suppose {i, j, k} is
a permutation of [3], we define the following [7]

M123 := M1 ∩M2 ∩M3, (21)
Mij := Mi ∩Mj , (22)

Mi(j,k) := Mi ∩ [Mj ∪Mk]. (23)

B. LCBC Model

Since we leverage results for LCBC model [10], we briefly
describe the LCBC problem. A general LCBC model is
specified by the parameters (q, r,K,E[K],D[K]), where a server
has r uniformly and independently distributed data blocks from
Fq and serves K users. We denote the concatenation of data
blocks as X = [x1; . . . ;xr] ∈ Fr×1

q . For every user j ∈ [K],
we denote the “cache projection matrix” as Ej ∈ Fmj×r

q ,
and the “demand projection matrix” as Dj ∈ Fnj×r

q , where
mj and nj are non-negative integers, which means that user
j has a side-information Sj = EjX ∈ Fmj×1

q and wants
Wj = DjX ∈ Fnj×1

q . A valid scheme consists of an encoding
function Ψ0, and decoding functions Ψ1, . . . ,ΨK. The server
sends Ψ0(X) ∈ F∆×1

q to the users and user j ∈ [K] decodes
yj := Ψj(Ψ0(X),Sj) : H(Wj |yj) = 0. The optimal number
of transmission is ∆⋆(E1, . . . ,EK;D1, . . . ,DK) and is the
smallest ∆ such as all listed requirements are met, where
symbol and field extensions are possible [10].

C. Bounds for coded caching from the LCBC model

We can obtain a lower bound on the load for the coded
caching model with LinP from LCBC as follows. Let

r := NB, (24a)
m1 = m2 = . . . = mK := MB, (24b)
n1 = n2 = . . . = nK := B. (24c)

The demand projection matrices correspond to single file
retrieval, thus they are of the of form

Dj = edj
⊗ IB, dj ∈ [N], j ∈ [K], (24d)

where ⊗ is the Kronecker product and ei the i-th standard
basis vector. We have

BR⋆
LinP ≥ min

E1,...,EK

max
d1,...,dK

∆⋆(E1, . . . ,EK;D1, . . . ,DK).

(24e)

D. The two-user Coded Caching Problem with LinP

We will leverage the following LCBD result.

Theorem IV.1 (From [10]). For the LCBC with K = 2 users,
side information matrices (E1,E2) and demand matrices
(D1,D2), the optimal number of transmissions is

∆⋆(E1,E2;D1,D2) (25)

= max
(i,j)∈{(1,2), (2,1)}

(
rk(Ui | Ei) + rk(Uj | Ui,E1,E2)

)
where Uj := [Ej ,Dj ], j ∈ [2]. □

We now show how to leverage Theorem IV.1 for the coded
caching problem with LinP with K = 2 users. Following [10],
we partition the cache encoding matrices Ẽ1 and Ẽ2 in (5)
into orthogonal submatrices E1,E12,E2, where

E12 := Ẽ1 ∩ Ẽ2, (26a)

E1 := Ẽ1 \E12, (26b)

E2 := Ẽ2 \E12. (26c)

Without loss of generality, we write ES , S ⊆ [2], as

PS
{1},1 0 . . . 0 0

0 PS
{2},2 . . . 0 0

...
...

. . .
...

...
0 0 . . . PS

{N−1},N−1 0

0 0 . . . 0 P{N},N
PS

{1,2},1 PS
{1,2},2 . . . 0 0

...
...

...
...

...
0 0 . . . PS

{N−1,N},N−1 PS
{N−1,N},N

...
...

...
...

...
PS

[N],1 PS
[N],2 . . . PS

[N],N−1 PS
[N],N



,

(27)

where PS
T ,n, for T ⊆ [N] and n ∈ T , can be thought of

as a linear encoding matrix involving T files for the nth

file. We next leverage two symmetry properties for the coded
caching problem: file symmetry and user symmetry [5]: even
if we shuffle the indices of users or of the files, the load is
unchanged. Thus, for S ⊆ [2], T ⊆ [N], n ∈ T , we can set the
rank of PS

T ,n as,

ri,jB := rk(PS
T ,n) : i = |T |, j = |S|. (28)



With this we write

rk(E1) = rk(E2) =
∑
i∈[N]

(
N

i

)
r1,i B, (29)

rk(E12) =
∑
i∈[N]

(
N

i

)
r2,i B. (30)

In addition, we write the cache and the file constraints as

(cache)
∑
i∈[N]

(
N

i

)
(r1,i + r2,i) ≤ M, (31)

(file)
∑
i∈[N]

(
N− 1

i− 1

)(
2r1,i + r2,i

)
≤ 1. (32)

Assume now that the two users have different demands, for
example d1 = 1, d2 = 2 (and similarly for all other demands),
then we can write

U1 = [E1, e1 ⊗ IB]

=



I 0 . . . 0 0
0 PS

{2},2 . . . 0 0
...

...
. . .

...
...

0 0 . . . PS
{N−1},N−1 0

0 0 . . . 0 P{N},N
0 PS

{1,2},2 . . . 0 0
...

...
...

...
...

0 0 . . . PS
{N−1,N},N−1 PS

{N−1,N},N
...

...
...

...
...

0 PS
[N],2 . . . PS

[N],N−1 PS
[N],N



,

(33)

and thus compute

1

B
rk(U1 | E1) = 1− r1,1 − r2,1, (34)

1

B
rk(U2 | U1,E1,E2) = 1− 2r1,1 − r2,1 − 2r1,2 − r2,2.

(35)

Finally, we write the optimal number of transmissions in (25)
as the following Linear Program (LP)

R⋆
LinP ≥ min(2− 3r1,1 − 2r1,2 − 2r2,1 − r2,2) (36a)

s.t. (r1,1 + r2,1) +
N− 1

2
(r1,2 + r2,2) ≤

M

N
, (36b)

(2r1,1 + r2,1) + (N− 1)(2r1,2 + r2,2) ≤ 1. (36c)

In Tables I and II we report the optimal values for the LP
variables in (36) for the case of N = 2 and N ≥ 3, respectively.
Note that variables whose optimal value is always zero are
not listed. When N = 2, LinP is needed for M ∈ [0, 1] (i.e.,
non zero value for r1,2) and the optimal load is as stated in
Theorem II.2. When N ≥ 3, MAN is optimal (i.e., all r·,2 are
zero) and the optimal load is as stated in Theorem II.4.

TABLE I: Optimal LP values for K = 2 = N.

M [0, 1
2
] [ 1

2
, 1] [1, 2]

r1,1 0 1− M
2

M− 1
2

r1,2 M 1−M 0

r2,1 0 0 M− 1

R 2− 2M 3−2M
2

1− M
2

TABLE II: Optimal LP values for K = 2 < N.
M
N

[0, 1
2
] [ 1

2
, 1]

r1,1
M
N

1− M
N

r2,1 0 2M
N

− 1

R 2− 3M
N

1− M
N

V. PROOF OF THEOREMS III.1 AND III.2

Next we leverage the result of [7] for the LCBC with
three users to prove Theorems III.1 and III.2. The approach
is similar to the one in Section IV, except for the complexity
because now we deal with three users.

Theorem V.1 (From [7]). For the LCBC with K = 3 users,
side information matrices (E1,E2,E3) and demand matrices
(D1,D2,D3), the optimal number of transmissions is

∆⋆(E1,E2,E3;D1,D2,D3) (37a)
= rk(U1 | E1) + rk(U2 | E2) + rk(U3 | E3) (37b)
−max{2λ123 + λ12 + λ13 + λ23 + λ}, (37c)

where the maximization is subject to the following constraints

λ123 ≤ rk(U123 | E1), (37d)
λ123 ≤ rk(U123 | E2), (37e)
λ123 ≤ rk(U123 | E3), (37f)

λ12 + λ123 ≤ rk(U12 | E1), (37g)
λ12 + λ123 ≤ rk(U12 | E2), (37h)
λ13 + λ123 ≤ rk(U13 | E1), (37i)
λ13 + λ123 ≤ rk(U13 | E3), (37j)
λ23 + λ123 ≤ rk(U23 | E2), (37k)
λ23 + λ123 ≤ rk(U23 | E3), (37l)

λ12 + λ13 + λ123 ≤ rk(U12,U13 | E1), (37m)
λ12 + λ23 + λ123 ≤ rk(U12,U23 | E2), (37n)
λ13 + λ23 + λ123 ≤ rk(U13,U23 | E3), (37o)

λ+ λ12 + λ13 + λ123 ≤ rk(U1(2,3) | E1), (37p)
λ+ λ12 + λ23 + λ123 ≤ rk(U2(1,3) | E2), (37q)
λ+ λ13 + λ23 + λ123 ≤ rk(U3(1,2) | E3). □ (37r)

Remark 4. In (37), each λ-parameter can be viewed as a
coding gain for different multicast messages, as illustarted in
Fig. 1. The term rk(U1 | E1) + rk(U2 | E2) + rk(U3 | E3)
in (37b) represent the load for uncoded transmission when
users are served sequentially one by one. λ123 represents an



⟨U1 | E1⟩

⟨U2 | E2⟩

⟨U3 | E3⟩

λ123

λ12 λ13

λ23

λ

λ λ

Fig. 1: Intuitive understanding for (37) from [7, Fig. 3].

amount of information that benefits all users; so its trans-
mission reduces the load by 2λ123 in (37c). Similarly, λij

represents an amount of information that benefits users i and j,
for {i, j} ⊆ [3]; so their transmission reduces the load by
λ12 + λ13 + λ23 in (37c). The yellow regions in Fig. 1 are
labeled by λ and are somewhat special; the corresponding
subspaces are mutually disjoint but any two of them contain
the remaining one [7]; its transmission reduces the load of
uncoded transmission by λ in (37c). □

A. Proof of Theorem III.1

Converse: We leverage Theorem V.1 for the coded
caching problem with K = 3 users. From [7], we
partition Ẽ1, Ẽ2, Ẽ3 as shows in Fig. 2. Note that
E1(2,3),E2(1,3),E3(1,2) are mutually disjoint but any two of
them contain the remaining one. Without loss of generality,
for every S ⊆ [3], we write ES as

ES =



PS
{1},1 0 0

0 PS
{2},2 0

0 0 PS
{3},3

PS
{1,2},1 PS

{1,2},2 0

PS
{1,3},1 0 PS

{1,3},3
0 PS

{2,3},2 PS
{2,3},3

PS
{1,2,3},1 PS

{1,2,3},2 PS
{1,2,3},3


, (38)

where PS
T ,n, for T ⊆ [N] and n ∈ T , can be thought of as

a linear encoding matrix involving T files for the nth file. By
symmetry, for S ⊆ [3], T ⊆ [N], n ∈ S, we can set the rank
of PS

T ,n as,

rk(PS
T ,n) = ri,jB, i = |T |, j = |S|. (39)

Similarly, for i ∈ [3] and {j, ℓ} = [3] \ {i}, without loss of
generality we can write

Ei(j,ℓ) =



Qi
{1},1 0 0

0 Qi
{2},2 0

0 0 Qi
{3},3

Qi
{1,2},1 Qi

{1,2},2 0

Qi
{1,3},1 0 Qi

{1,3},3
0 QS

{2,3},2 Qi
{2,3},3

Qi
{1,2,3},1 Qi

{1,2,3},2 Qi
{1,2,3},3


, (40)
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) E 3(

1,
2)

E1

E
2 E 3

Fig. 2: The decomposition of ⟨Ẽ1⟩, ⟨Ẽ2⟩, ⟨Ẽ3⟩ into
subspaces, labeled by corresponding bases

where Qi
T ,n, for T ⊆ [N] and n ∈ T , can be thought of as a

linear encoding matrix involving T files for the nth file. For
i ∈ [3], T ⊆ [N], n ∈ T , we can set the rank of Qi

T ,n as,

rk(Qi
T ,n) = qjB, j = |T |. (41)

We next solve with Mathematica [11] the LP we obtain from
Theorem V.1 with similar tricks as in Section IV. In Mathe-
matica, we transform these symbolic matrices E’s to {0, 1}
matrices, then we perform some linear algebra operations to
compute the rank, as detailed in Appendix. We assume demand
dk = k, k ∈ [3]. Due to the symmetry, a number constraints
are the same and we can let without loss of generality

λ3 := λ123, (42)
λ2 := λ12 = λ13 = λ23, (43)
λ1 := λ. (44)

The final LP, to be optimized over all non-negative r, q, λ, is

3(1− q1 − r1,1 − 2r2,1 − r3,1)− (2λ3 + 3λ2 + λ1), (45a)

subject to

λ3 ≤ r2,1, (45b)
λ2 + λ3 ≤ q1 + 2q2 + r1,1 + 2r1,2

+ r2,1 + 3r2,2 + r3,2, (45c)
2λ2 + λ3 ≤ q1 + 4q2 + 2r1,1 + 4r1,2

+ r2,1 + 6r2,2 + 2r3,2, (45d)
λ1 + λ2 + λ3 ≤ q1 + 4q2 + 2q3 + 2r1,1 + 6r1,2 + 3r1,3

+ r2,1 + 6r2,2 + 3r2,3 + 2r3,2 + r3,3, (45e)

and additional cache and file constraints
N∑

j=1

1

N

(
N

j

)
(r1,j + 2r2,j + r3,j + qj) ≤

M

N
, (45f)

N∑
j=1

(
N− 1

j − 1

)
(3r1,j + 3r2,j + r3,j + 2qj) ≤ 1. (45g)

We can further simplify the LP in (45). The constraint for
λ3 holds equality, i.e., λ3 = r2,1. The constraints for λ2 and
λ1 reduces to

2λ2 = 2r1,1 + 4r1,2 + 6r2,2 + 2r3,2 + q1 + 4q2, (46)



λ1 = 2r1,2 + 3r1,3 + 3r2,3 + r3,3. (47)

Thus, the LP objectives becomes

min
r,q≥0

3− 6r1,1 − 8r1,2 − 3r1,3 − 8r2,1 − 9r2,2 − 3r2,3

− 3r3,1 − 3r3,2 − r3,3 − 4.5q1 − 6q2. (48)

By solving the LP in (48) subject to (45f) and (45g), a
red dash-dotted memory-load tradeoff is attained as shows in
Fig 3b. The optimal values of the LP variables and the optimal
load for the LP in (48) are shown in Table III.

Achievablility: From Table III, when M = 1/2, we find
the optimal r1,2 = 1/6, λ2 = λ1 = 1/3, and the rest of
variables are zeros. This result shows first of all that all
cache encoding matrices are disjoint and LinP coding involves
exactly two files; and secondly, that we can find a coded
strategy that can save 3λ2 + λ1 load compared to uncoded
transmission. We use this result to guide our design for an
achievable scheme with LinP.

We partition each file into 6 equal-length subfiles as F1 =
(A1, A2, . . . , A6) and similarly for F2 (whose subfiles are
denoted by B) and F3 (whose subfiles are denoted by C).
The LinP cache placement is as follows

Z1 =

A1 +B1

A2 + C1

B2 + C2

 , Z2 =

A3 +B3

A4 + C3

B4 + C4

 , Z3 =

A5 +B5

A6 + C5

B6 + C6

 .

Assume demands dk = k, k ∈ [3], (and similarly for other
demands). The server transmits

X = (A3, A6, B1, B6, C1, C4, C2 − C3, B2 −B5,

A4 −A5, B2 + C2 +A4 + C3 +A5 +B5).

We explain how users decode their desired file. Take user 1 as
an example who demands file 1. First, user 1 directly attains
{A3, A6}, and use {B1, C1} to decode {A1, A2}. Next, we
know that it has B2 + C2, then it extracts B5 + C3 as (C2 −
C3 + B2 − B5) − (B2 + C2), and A4 + A5 as (B2 + C2 +
A4 + C3 + A5 + B5) − (B5 + C3 + B2 + C2). Finally, with
the last message A4 − A5, user 1 can decode out {A4, A5}.
Similar for the other users.

As we have 10 multicast messages with 6 sub-packetization,
the point (1/2, 5/3) is achievable. The size of finite field q can
be any prime-power number except 2, as the last step requires
A4 +A5 and A4 −A5 are independent.

B. Proof of Theorem III.2

Converse: We solve again the LP in (48) with constraints
in (45g) and (45f) for N > 3. As N increases, the coefficients
multiplying r·,j and qj , for j ≥ 2, in (45g) and (45f) increase
rapidly (i.e., 1

N

(
N
j

)
=
(
N−1
j−1

)
1
j is a polynomial function of N

for j ≥ 2), i.e., non-zero values for those variables consume
a lot “resource” within the constraints but contribute little to
the objective function, which suggests that they should be set
to zero. With this, the LP becomes

min
r,q

3− 6r1,1 − 8r2,1 − 3r3,1 − 4.5q1 (49a)

TABLE III: Optimal LP values for K = 3 = N.

M [0, 1
3
] [ 1

3
, 1
2
] [ 1

2
, 1] [1, 2] [2, 3]

r1,1 0 0 2M−1
3

2−M
3

0

r1,2 0 M− 1
3

1−M
3

0 0

r1,3 M 1− 2M 0 0 0

r2,1 0 0 0 M−1
3

1− M
3

r3,1 0 0 0 0 M− 2

R 3− 3M 8−6M
3

7−4M
3

5−2M
3

3−M
3

TABLE IV: Optimal LP values for K = 3 < N.
M
N

[0, 1
3
] [ 1

3
, 2
3
] [ 2

3
, 1]

r1,1
M
N

2
3
− M

N
0

r2,1 0 M
N

− 1
3

1− M
N

r3,1 0 0 3M
N

− 2

R 3− 6M
N

5
3
− 2M

N
1− M

N

s.t r1,1 + 2r2,1 + r3,1 + q1 ≤ M/N (49b)
3r1,1 + 3r2,1 + r3,1 + 2q1 ≤ 1. (49c)

The optimal values of the LP variables and the load are
reported in Table IV. We note that q1 is always zero.

Achievability: From Table IV we find q1 = 0 and r·,1
are non-zeros, which is equivalent to the LP with uncoded
placement. Thus, MAN is optimal under LinP when N > K =
3. The memory-tradeoff is shown in Fig. 3c.

VI. CONCLUSIONS

For the coded caching system with three users, the exact
memory-load tradeoff under linear coding placement is found
by leveraging a result in [7]. When N = K = 3, a novel
corner point is discovered in this paper. The MAN scheme
with uncoded placement is found to be optimal under linear
coding placement when N > K = 3. Open questions include
further investigating the small memory regime for 3 = K ≤
N ≤ 5, and deriving the optimal tradeoff under linear coding
placement for arbitrary (N,K).

APPENDIX

AUTOMATICALLY COMPUTE MATRIX RANK

We map a symbolic matrix to another {0, 1} matrix; then
we transform union and intersection operations over symbolic
matrices to linear algebra operations over the {0, 1} matrices.
With this, we transform the symbolic linear program in The-
orem V.1 to a linear program we can solved in Mathematica.

All symbolic independent variables we have so far are

{PS
T ,i : S ⊆ [3], T ⊆ [N], i ∈ T }, (51)

{Qℓ
T ,i : ℓ ∈ [2], T ⊆ [N], i ∈ T }. (52)

Other implicit variables are {Fv : v ∈ [3]}. Recall that we
have file constraint, i.e., fix v ∈ [N],∑

T ⊆[N],v∈T

( ∑
S⊆[3]

rk(PS
T ,v) +

∑
i∈[2]

rk(Qi
T ,v)

)
≤ B. (53)
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Fig. 3: The memory-load tradeoff under LinP for K = 3 and various N. Figure 3a shows LinP is optimal in general when
N = 2. Figure 3b shows a non-linear coding placement may be needed to close the gap in the grey region when N = 3.

Figure 3c shows MAN is optimal under LinP when N ≥ 4.

P1
{1},1 . . . P1

{1,2},1 P1
{1,2},2 . . . P1

{1,2,3},1 P1
{1,2,3},2 P1

{1,2,3},3 . . . Q1
{1},1 Q1

{1},1 . . .

1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0

(50)

For v ∈ [N], we can add a complement and make this as a
equality,∑
T ⊆[N],v∈T

( ∑
S⊆[3]

rk(PS
T ,v) +

∑
i∈[2]

rk(Qi
T ,v)

)
+ F c

v = B. (54)

Then, we can express every Fv as a form of {PS
T ,v}∪{Q

(i)
T ,v}∪

F c
v . The number of variables is

N+ (23 − 1)
(∑
t∈[N]

(
N

t

)
t
)
+ 2
(∑
t∈[N]

(
N

t

)
t
)
= N+ 9N2N−1.

(55)

Plug N = 3 in this equation, we have 3+ 9(3+ 6+ 3) = 111
independent variables.

Fix T , i, we can express the dependent relationship among
{Qℓ

T ,i : ℓ ∈ [3]} as follows,

Q3
T ,i = Q1

T ,i +Q2
T ,i. (56)

We now have all symbolic variables we need. Next we
can express all independent variables as a unit vector, then
transform a symbolic matrix as a {0, 1} matrix. For example,
suppose we have a symbolic matrix G given by

G =


P1

{1},1 0 0

P1
{1,2},1 P1

{1,2},2 0

P1
{1,2,3},1 P1

{1,2,3},2 P1
{1,2,3},3

Q3
{1},1 0 0


then it can be transformed to a {0, 1} matrix as shows
in (50). Naturally, this {0, 1} representation supports the union
and intersection operations over symbolic matrices. When
we union two symbolic matrices, we can concatenate both

{0, 1} matrices, then eliminate those redundant rows that
are linearly dependent on others. When we intersect two
symbolic matrices, equivalently we can compute the nullspace
of between these {0, 1} matrices. Note that these linear algebra
operations are based on the real domain.
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