An Achievable Scheme for the K-user Linear Computation Broadcast Channel

Yinbin Ma

Daniela Tuninetti

University of Illinois Chicago

June 23, 2025

Outline

Introduction

Problem Formulation

Subspace Decomposition

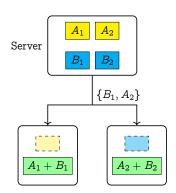
Achievability

Example

Conclusion

What is K-LCBC?

- ► A K-LCBC comprises data stored on a server and K users
- ► Each user aims to retrieve a desired linear function of data.
- Users leverage their prior side information (also a linear function of data) to retrive their desired information.
- ► The server broadcasts a message to the users so as to minimize the communication load.



Motivation & Contributions

- ► Motivated by distributed computing (e.g., federated learning), and related to other models in info. theory.
- ► Index coding was instrumental to determine the minimal load of the LCBC with uncoded placement.
- ► LCBC could potentially be leveraged to derive the ultimate performance limits of coded caching with linear coded placement.

Motivation & Contributions

Introduction

- ► Motivated by distributed computing (e.g., federated learning), and related to other models in info. theory.
- ► Index coding was instrumental to determine the minimal load of the LCBC with uncoded placement.
- ► LCBC could potentially be leveraged to derive the ultimate performance limits of coded caching with linear coded placement.
- ▶ Prior LCBC works include optimality results for 2 and 3 users, and a 'generic' setting with any number of users.
- ▶ We introduce an LP-framework for K-LCBC achievability by multicast and interference elimination.

System Model

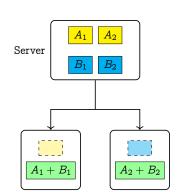
▶ Server stores data i.i.d. uniformly at random

$$\mathrm{f}(t) = \left[f_1(t), \ldots, f_\mathsf{d}(t)\right]^T \in \mathbb{F}_\mathsf{q}^{\mathsf{d} imes 1}.$$

- lacksquare Side info. for user k: $\mathbf{w}_k'(t) = \mathbf{f}(t)^T \mathbf{V}_k' \in \mathbb{F}_{\mathsf{q}}^{1 \times m_k'}$.
- ▶ Desired info. for user k: $\mathbf{w}_k(t) = \mathbf{f}(t)^T \mathbf{V}_k \in \mathbb{F}_{\mathbf{q}}^{1 \times m_k}$.
- \triangleright WLOG, V'_k and V_k are linearly independent.

System Model (Cont.)

$$egin{aligned} \mathsf{d} &= \mathsf{4}, \, m_{\star}' = \mathsf{1}, \, m_{\star} = \mathsf{2}, \ \mathsf{f}(t) &= [A_1, A_2, B_1, B_2]^T, \ \mathsf{V}_1' &= [\mathsf{1}, \mathsf{0}, \mathsf{1}, \mathsf{0}], \ \mathsf{V}_2' &= [\mathsf{0}, \mathsf{1}, \mathsf{0}, \mathsf{1}], \ \mathsf{V}_1 &= egin{bmatrix} \mathsf{1} & \mathsf{0} & \mathsf{0} & \mathsf{0} \ \mathsf{0} & \mathsf{1} & \mathsf{0} & \mathsf{0} \end{bmatrix}, \ \mathsf{V}_2 &= egin{bmatrix} \mathsf{0} & \mathsf{0} & \mathsf{1} & \mathsf{0} \ \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{1} \end{bmatrix}. \end{aligned}$$



Performance Metric

An achievable $(L, N, \phi, (\varphi_k)_{k \in [K]})$ coding scheme consists of:

- ▶ Server aggregates L instances: F = [f(1), ..., f(L)].
- Server sends $X = \phi(F)$ of size N.
- User k decodes $W_k = \varphi_k(W'_k, X)$.
- ▶ Rate: R = N/L.
- ▶ LCBC Capacity: The infimum of N/L over all achievable schemes.
- ▶ Capacity for 2 and 3 users is known. Capacity for $K \ge 4$ users is open.

General Subspace Decomposition

- Our proposed scheme is based on a subspace decomposition derived from representable polymatroid spaces.
- ▶ This enables the server to design multicast messages that simultaneously benefit multiple users.
- ▶ Users can eliminate interference using their available side information
- ► Notation:
 - Matrix: M. If columns are linear indept., they are a base.
 - Space spanned by columns of M: \langle M\rangle.
 - ▶ Intersection of subspaces: $M_S := \bigcap_{k \in S} \langle M_k \rangle$.
 - Union of subspaces: $M_{(S)} := \bigcup_{k \in S} \langle \tilde{M}_k \rangle$.

General Subspace Decomposition (Cont.)

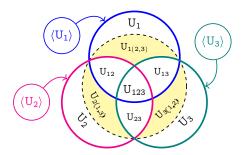
- Notation:
 - Matrix: M. If columns are linear indept., they are a base.
 - Space spanned by columns of M: \langle M\rangle.
 - ▶ Intersection of subspaces: $M_S := \bigcap_{k \in S} \langle M_k \rangle$.
 - Union of subspaces: $M_{(S)} := \bigcup_{k \in S} \langle \tilde{M}_k \rangle$.
- Rank Notation:
 - Conditional Rank:

$$\mathsf{rk}(M_1|M_2) := \mathsf{rk}(M_{(12)}) - \mathsf{rk}(M_2) = \mathsf{rk}(M_1) - \mathsf{rk}(M_{12}).$$

$$egin{array}{ccccc} M_1 & igg(M_1 | M_2 & igg(M_{12} igg) & M_2 | M_1 \ & M_{(12)} \ & & \end{array} egin{array}{cccc} M_2 | M_1 \ & & \end{array} egin{array}{cccc} M_2 | M_1 \ & & \end{array} egin{array}{cccc} M_2 | M_2 \ & & \end{array} egin{array}{cccc} M_2 | M_2 \ & & \end{array} egin{array}{cccc} M_2 | M_2 \ & & \end{array} egin{array}{ccccc} M_2 | M_2 \ & & & \end{array} egin{array}{ccccc} M_2 | M_2 \ & & & \end{array} egin{array}{ccccccc} M_2 | M_2 \ & & & & \end{array} egin{array}{ccccc} M_2 | M_2 \ & & & & & \end{array} egin{array}{ccccc} M_2 | M_2 \ & & & & & & \end{array} egin{array}{ccccc} M_2 | M_2 \ & & & & & & & & \\ M_{(12)} | M_2 | M_2 \ & & & & & & & & \\ M_{(12)} | M_2 | M_2 \ & & & & & & & \\ M_{(12)} | M_2 | M_2 \ & & & & & & \\ M_{(12)} | M_2 | M_2 \ & & & & & \\ M_{(12)} | M_2 | M_2 \ & & & & \\ M_{(12)} | M_2 | M_2 \ & & & & \\ M_{(12)} | M_2 | M_2 \ & & & \\ M_{(12)} | M_2 | M_2 \ & & & \\ M_{(12)} | M_2 | M_2 \ & & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)} | M_2 | M_2 \ & & \\ M_{(12)$$

Given $\{U_k : k \in [K]\}$, define $\mathcal{V} := \mathcal{V}_1 \cup \mathcal{V}_2 \cup \mathcal{V}_3$:

- $ightharpoonup \mathcal{V}_1 = \{ \mathbb{U}_{\mathcal{S}} : \mathcal{S} \subseteq [\mathsf{K}], |\mathcal{S}| \geq 2 \}.$
- $\blacktriangleright \ \mathcal{V}_2 = \{ \mathbb{U}_{k(\mathcal{T} \setminus k)} : \mathcal{T} \subseteq [\mathsf{K}], |\mathcal{T}| \geq 3, k \in \mathcal{T} \}.$
- ▶ $V_3 = \{U_k, k \in [K]\}.$

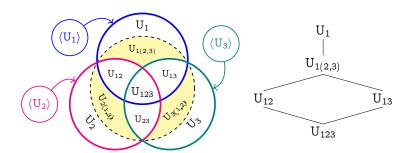


$$\begin{split} \mathcal{V}_1 &= \{U_{123}, U_{12}, U_{13}, U_{23}\}, \\ \mathcal{V}_2 &= \{U_{1(2,3)}, U_{2(1,3)}, U_{3(1,2)}\}, \\ \mathcal{V}_3 &= \{U_1, U_2, U_3\}. \end{split}$$

Subspace & Basis (Cont.)

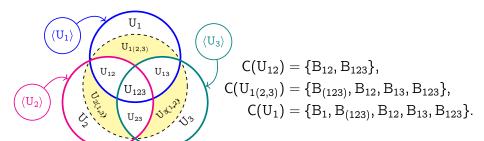
Given $\{U_k : k \in [K]\}$, define $\mathcal{V} := \mathcal{V}_1 \cup \mathcal{V}_2 \cup \mathcal{V}_3$:

- ▶ For a subspace $V \in \mathcal{V}$, LS(V) lists the "closest" subspaces contained in V.
- An ordered tree is possible by connecting node V and every node in LS(V).



Given $\{U_k : k \in [K]\}$, define $\mathcal{V} := \mathcal{V}_1 \cup \mathcal{V}_2 \cup \mathcal{V}_3$:

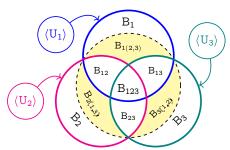
- ▶ Basis B(V) := $V \setminus \bigcup_{Q \in \mathsf{LS}(V)} Q$. This spans V but not the subspaces in LS(V).
- $ightharpoonup C(V) = B(V) \cup (\bigcup_{U \in LS(V)} C(U))$ is the set of bases covered by V.



Subspace & Basis (Cont.)

Lemma

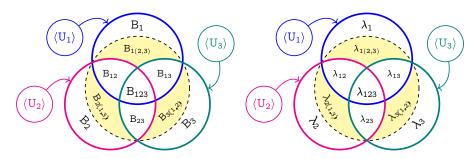
Given any $\mathcal{T} \subseteq [\mathsf{K}]$ and $t := |\mathcal{T}| \geq 3$, the subspaces $\mathsf{B}_{k(\mathcal{T} \setminus \{k\})} : k \in \mathcal{T}$, have identical dimension, and any t-1 of them are linearly independent.



When K = 3, [YJ24a] shows $B_{1(2,3)}$, $B_{2(1,3)}$ and $B_{3(1,2)}$ are pairwise linearly independent, and have same dimension.

Let $\lambda_{\star} \geq 0$ be the optimizing variables, essentially coding gain from linear coding.

- ▶ For every $U_S \in \mathcal{V}_1$, λ_S is assigned to its base B_S ;
- ▶ For every $U_{k(S)} \in V_2$, $\lambda_{(\{k\} \cup S)}$ is assigned to $B_{k(S)}$;
- ▶ For every U_k , λ_k is assigned to B_k .



Theorem 1: Achievability via LP

For the K-LCBC, let $U_k = [V'_k; V_k]$. The following rate is achievable:

$$\min_{\lambda_{\star} \geq 0} \sum_{\mathcal{S} \subseteq [\mathsf{K}]} \lambda_{\mathcal{S}} + \sum_{t=3}^{\mathsf{K}} \sum_{\mathcal{S} \in \Omega_{[\mathsf{K}]}^t} (t-1) \lambda_{(\mathcal{S})}$$

Where λ_{\star} are varibales associated with bases from $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3$.

▶ For $U_S \in V_1$ and $\mathcal{L}_S \subset LC(U_S)$,

"Sum of
$$C_{\lambda}(U_{\mathcal{S}})$$
" $< \mathsf{rk}(U_{\mathcal{S}} \mid V_{k}'),$ (1a)

"Sum of
$$\bigcup_{V \in \mathcal{L}_{\mathcal{S}}} C_{\lambda}(V)$$
" $\leq \operatorname{rk}(\mathcal{L}_{\mathcal{S}} \mid V'_{k}),$ (1b)

Theorem 1: Achievability via LP

For the K-LCBC, let $U_k = [V'_k; V_k]$. The following rate is achievable:

$$\min_{\lambda_{\star} \geq 0} \sum_{\mathcal{S} \subseteq [\mathsf{K}]} \lambda_{\mathcal{S}} + \sum_{t=3}^{\mathsf{K}} \sum_{\mathcal{S} \in \Omega_{[\mathsf{K}]}^t} (t-1) \lambda_{(\mathcal{S})}$$

Where λ_{\star} are varibales associated with bases from $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3$.

▶ For $U_S \in V_1$ and $\mathcal{L}_S \subseteq LC(U_S)$,

"Sum of
$$C_{\lambda}(U_{\mathcal{S}})$$
" $\leq \mathsf{rk}(U_{\mathcal{S}} \mid V_{k}'),$ (1a)

"Sum of
$$\bigcup_{V \in \mathcal{L}_{\mathcal{S}}} \mathsf{C}_{\lambda}(V)$$
" $\leq \mathsf{rk}(\mathcal{L}_{\mathcal{S}} \mid \mathsf{V}'_{k}),$ (1b)

▶ For $U_{k(S)} \in V_2$ and $\mathcal{L}_{k(S)} \subseteq LC(U_{k(S)})$,

"Sum of
$$C_{\lambda}(U_{k(\mathcal{S})})$$
" $\leq \mathsf{rk}(U_{k(\mathcal{S})} \mid V_{k}'),$ (2a)

"Sum of
$$\bigcup_{V \in \mathcal{L}_{k(\mathcal{S})}} \mathsf{C}_{\lambda}(V)$$
" $\leq \mathsf{rk}(\mathcal{L}_{k(\mathcal{S})} \mid \mathsf{V}'_{k}),$ (2b)

Theorem 1: Achievable Rate via LP

For the K-LCBC, let $U_k = [V'_k; V_k]$. The following rate is achievable:

$$\min_{\lambda_{\star} \geq 0} \sum_{\mathcal{S} \subseteq [\mathsf{K}]} \lambda_{\mathcal{S}} + \sum_{t=3}^{\mathsf{K}} \sum_{\mathcal{S} \in \Omega_{[\mathsf{K}]}^t} (t-1) \lambda_{(\mathcal{S})}$$

Where λ_{\star} are coefficients associated with bases from $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3$.

- **.**...
- ▶ For $U_k \in \mathcal{V}_3$,

"Sum of
$$C_{\lambda}(U_k)$$
" = $\mathsf{rk}(U_k \mid V_k') = \mathsf{rk}(V_k)$, (3)

- ▶ Equality ensures all desired information is recovered.
- ▶ When K = 2 or K = 3, this LP is proved as optimal in [SJ19] and [YJ24a], respectively.

Interpreting λ Variables & Coding Gain

The objective function can be rewritten as:

$$\sum_{k=1}^{\mathsf{K}}\mathsf{rk}(\mathsf{U}_k|\mathsf{V}_k') - \sum_{t=2}^{\mathsf{K}}\sum_{\mathcal{S}\in\Omega_{[\mathsf{K}]}^t}(t-1)\lambda_{\mathcal{S}} - \sum_{\mathcal{S}\subseteq[\mathsf{K}],|\mathcal{S}|\geq 3}\lambda_{(\mathcal{S})}$$

- First term: Load of uncoded transmissions (serving users individually).
- \triangleright Each λ_{\star} represents the coding gain from a multicast message.

Interpreting λ Variables & Coding Gain

The objective function can be rewritten as:

$$\sum_{k=1}^{\mathsf{K}}\mathsf{rk}(\mathsf{U}_k|\mathsf{V}_k') - \sum_{t=2}^{\mathsf{K}}\sum_{\mathcal{S}\in\Omega_{[\mathsf{K}]}^t}(t-1)\lambda_{\mathcal{S}} - \sum_{\mathcal{S}\subseteq[\mathsf{K}],|\mathcal{S}|\geq 3}\lambda_{(\mathcal{S})}$$

- ► First term: Load of uncoded transmissions (serving users individually).
- ► Each λ_{\star} represents the coding gain from a multicast message.
- ▶ $\lambda_{\mathcal{S}}$: Rank of (multicast or unicast when $|\mathcal{S}| = 1$) message serving $|\mathcal{S}|$ users, reducing load by $(|\mathcal{S}| 1)\lambda_{\mathcal{S}}$.
- $\lambda_{(S)}$: Rank of messages where t-1 are linearly independent, serving t=|S| users, reducing load by $\lambda_{(S)}$.

Toy Example (Index Coding):

- ▶ f = [A, B, C, D].
- ▶ User 1 wants B, knows A; User 2 wants C, knows B; User 3 wants D, knows C; User 4 wants A, knows D.
- Subspace decomposition

$$V_1 = [A, B], U_2 = [B, C], U_3 = [C, D], U_4 = [A, D].$$

$$ightharpoonup$$
 $B_{12} = B$, $B_{23} = C$, $B_{34} = D$, $B_{14} = A$.

Objective function

$$\sum_{\mathcal{S}\subseteq [4]} \lambda_{\mathcal{S}} + \sum_{t=3}^4 \sum_{\mathcal{S}\in \Omega^t_{[4]}} (t-1) \lambda_{(\mathcal{S})}.$$

- \triangleright Constraints on λ_{+}
 - $\lambda_{12} \leq \operatorname{rk}(U_{12}|V_1') = \operatorname{rk}([A, B]) \operatorname{rk}([B]) = 1,$
 - $\lambda_{12} \leq \mathsf{rk}(\mathsf{U}_{12}|\mathsf{V}_2') = \mathsf{rk}([B,B]) \mathsf{rk}([B]) = 0$
 - ▶ All $\lambda_{\mathcal{S}} = 0$ where $\mathcal{S} \subseteq [4], |\mathcal{S}| \geq 2$.

Toy Example (Index Coding):

- ▶ f = [A, B, C, D].
- ▶ User 1 wants B, knows A; User 2 wants C, knows B; User 3 wants D, knows C; User 4 wants A, knows D.
- Subspace decomposition
 - $V_1 = [A, B], U_2 = [B, C], U_3 = [C, D], U_4 = [A, D].$
 - ightharpoonup $B_{12} = B$, $B_{23} = C$, $B_{34} = D$, $B_{14} = A$.
- Objective function

$$\sum_{\mathcal{S}\subseteq [4]} \lambda_{\mathcal{S}} + \sum_{t=3}^4 \sum_{\mathcal{S}\in \Omega^t_{[4]}} (t-1) \lambda_{(\mathcal{S})}.$$

- ightharpoonup Constraints on λ_{\star}
 - $\lambda_{(123)} \leq \operatorname{rk}(U_{1(23)}|V_1') = \operatorname{rk}([A]) \operatorname{rk}([A]) = 0,$
 - $\lambda_{(123)} \leq \operatorname{rk}(U_{2(13)}|V_2') = \operatorname{rk}([A, B]) \operatorname{rk}([B]) = 1,$
 - $\lambda_{(123)} \leq \operatorname{rk}(U_{3(12)}|V_3') = \operatorname{rk}([C, C]) \operatorname{rk}([C]) = 0,$
 - $\lambda_{(123)} = \lambda_{(124)} = \lambda_{(134)} = \lambda_{(234)} = 0.$

Toy Example (Index Coding):

- ▶ f = [A, B, C, D].
- ▶ User 1 wants B, knows A; User 2 wants C, knows B; User 3 wants D, knows C; User 4 wants A, knows D.
- ▶ Subspace decomposition
 - $V_1 = [A, B], U_2 = [B, C], U_3 = [C, D], U_4 = [A, D].$
 - ightharpoonup $B_{12} = B$, $B_{23} = C$, $B_{34} = D$, $B_{14} = A$.
- Objective function

$$\sum_{\mathcal{S}\subseteq [4]} \lambda_{\mathcal{S}} + \sum_{t=3}^4 \sum_{\mathcal{S}\in \Omega^t_{[4]}} (t-1) \lambda_{(\mathcal{S})}.$$

- ightharpoonup Constraints on λ_{\star}
 - $\lambda_{(1234)} \leq \operatorname{rk}(U_{1(234)}|V_1') = \operatorname{rk}([A, B]) \operatorname{rk}([A]) = 1,$
 - $\lambda_{(1234)} \leq \operatorname{rk}(U_{2(134)}|V_2') = \operatorname{rk}([B, C]) \operatorname{rk}([B]) = 1,$
 - $\lambda_{(1234)} \leq \operatorname{rk}(U_{3(124)}|V_3') = \operatorname{rk}([C,D]) \operatorname{rk}([C]) = 1,$
 - $\lambda_{(1234)} < \text{rk}(U_{4(123)}|V_4') = \text{rk}([A, D]) \text{rk}([D]) = 1,$

Toy Example (Index Coding):

- ▶ f = [A, B, C, D].
- ▶ User 1 wants B, knows A; User 2 wants C, knows B; User 3 wants D, knows C; User 4 wants A, knows D.
- ► Subspace decomposition
 - $V_1 = [A, B], U_2 = [B, C], U_3 = [C, D], U_4 = [A, D].$
 - ightharpoonup B₁₂ = B, B₂₃ = C, B₃₄ = D, B₁₄ = A.
- Objective function

$$\sum_{\mathcal{S}\subseteq [4]} \lambda_{\mathcal{S}} + \sum_{t=3}^4 \sum_{\mathcal{S}\in \Omega^t_{[4]}} (t-1) \lambda_{(\mathcal{S})}.$$

- ▶ Constraints on λ_{\star} : $\lambda_{(1234)} \leq 1, \lambda_k \leq 1$,
- Four birds Three stones", X = (A + B, B + C, C + D).
- ▶ Optimal as proved by [AK⁺18, MAIS converse].

Generic LCBC Setting

- ▶ Consider a LCBC instance Λ_n where
 - uniform cache size and demand size;
 - V'_k and V_k are generated from \mathbb{F}_{p^n} at i.i.d. uniformly random;
- ▶ Performance Metric
 - ▶ Find \triangle s.t. $\Pr(|\Delta^*(\Lambda_n) \triangle| < \epsilon) \to 1$ when $n \to \infty$.
 - ▶ Since $\Delta^*(\Lambda_n)$ is always bounded, it implies $\mathbb{E}\Delta^*(\Lambda_n) = \Delta$.
- ▶ [YJ24b] proves such exact Δ^* exists when certain conditions hold, if not, it is within a factor of 2.
 - The scheme invokes asymptotic IA scheme in K-user interference channel.

Example (Generic LCBC setting)

- ightharpoonup f = [A, B, C, D], d = 4, $m'_k = m_k = 1$.
- $ightharpoonup V_k' = [v_{k,i} : i \in [4]], V_k = [v_{k,i} : i \in [4]].$
- $V_1'; \ldots; V_4'; V_1; \ldots V_4$ is (4, 8) MDS code.

Subspace decomposition ($ijr\ell$ is a permutation of 1234)

▶ $B_{i(jr)} = U_i$, other bases are 0.

Constraints on λ_{\star}

$$\lambda_{(ijr)} \le \mathsf{rk}(\mathsf{U}_{i(jr)}|\mathsf{V}_i') = 1,\tag{4a}$$

$$\lambda_{(1234)} \le \mathsf{rk}(\mathsf{U}_{i(jr\ell)}|\mathsf{V}_i') = 1 \tag{4b}$$

$$\lambda_{(ijr)} + \lambda_{(ij\ell)} \le \mathsf{rk}(\mathrm{U}_{i(jr)}, \mathrm{U}_{i(j\ell)} | \mathrm{V}_i') = 1,$$
 (4c)

$$\lambda_{(ijr)} + \lambda_{(ij\ell)} + \lambda_{(ir\ell)} \le \mathsf{rk}(\mathsf{U}_{i(jr)}, \mathsf{U}_{i(j\ell)}, \mathsf{U}_{i(r\ell)} | \mathsf{V}_i') = 1, \quad (4d)$$

Solving LP, $\lambda_{(ijr)} = \frac{1}{3}$, thus the load is $\frac{8}{3}$. However, [YJ24b] proves the exact load is 2.

Conclusion

- ➤ We propose a new achievable scheme for general K-LCBC (i.e., arbitrary number of users K).
- ► The scheme is based on a general subspace decomposition derived from representable polymatroid spaces.
- ► It leverages linear dependencies among subspaces to enable multicast opportunities and interference elimination, optimizing the communication load via a linear program.
- ► The scheme recovers known capacity results for K = 2 and K = 3 users.

Future Work

- ► Comparing the achievable rate with a converse bound to determine optimality or sub-optimality gaps.
- ► Further strengthening the scheme by accounting for more complex dependencies that may exist in the subspace decomposition, potentially lowering the rate.
- Exploring applications to related problems, such as:
 - ▶ Coded caching with linear coded placement.
 - ► Coded caching with scalar linear function retrieval.

Thank You!

References I

Foundations and Trends® in Communications and Information Theory, 14(3-4):163-346, 2018.

- Hua Sun and Syed Ali Jafar.
 On the capacity of computation broadcast.

 IEEE Transactions on Information Theory,
 66(6):3417-3434, 2019.
 - Yuhang Yao and Syed A Jafar.

 The capacity of 3 user linear computation broadcast.

 IEEE Transactions on Information Theory, 2024.

References II

Yuhang Yao and Syed A Jafar.

On the generic capacity of k-user symmetric linear computation broadcast.

IEEE Transactions on Information Theory, 2024.