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Introduction
e0

What 1s K-LCBC?

| 2

>

>

A K-LCBC comprises data stored
on a server and K users.
Each user aims to retrieve a

. . . S
desired linear function of data. erver

Users leverage their prior side
information (also a linear
function of data) to retrive their
desired information.

The server broadcasts a message - t--
to the users so as to minimize the
communication load.
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Motivation & Contributions

» Motivated by distributed computing (e.g., federated
learning), and related to other models in info. theory.

» Index coding was instrumental to determine the minimal
load of the LCBC with uncoded placement.

» LCBC could potentially be leveraged to derive the ultimate
performance limits of coded caching with linear coded
placement.
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oe

Motivation & Contributions

» Motivated by distributed computing (e.g., federated
learning), and related to other models in info. theory.

» Index coding was instrumental to determine the minimal
load of the LCBC with uncoded placement.

» LCBC could potentially be leveraged to derive the ultimate
performance limits of coded caching with linear coded
placement.

» Prior LCBC works include optimality results for 2 and 3
users, and a ‘generic’ setting with any number of users.

> We introduce an LP-framework for K-LCBC achievability
by multicast and interference elimination.
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Problem Formulation
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System Model

» Server stores data i.i.d. uniformly at random

f(¢) = [ 1(2), - 1fd(t)]T S [Fc(]bd'

!
1xmy,

» Side info. for user k: wi(t) = £(¢)TV} € Fq
> Desired info. for user k: wi(t) = f(¢)TV} € Fg*™.
» WLOG, V), and Vj, are linearly independent.

6/31



Problem Formulation
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System Model (Cont.)

d=4,m.=1,m,=2,
f(t) = [A1, Az, B, Bs] 7,
Vi =11,0,1,0],

5=10,1,0,1],

VFE?SS] [ 1

0 10 o o
Ve = [0 0 1] '

o o
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Problem Formulation
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Performance Metric

An achievable (L, N, ¢, (¢x)re[k]) coding scheme consists of:

>
>
>
>
>

>

Server aggregates L instances: F = [{(1),...,{(L)].

Server sends X = ¢(F) of size N.

User k decodes Wy = (W)}, X).

Rate: R = N/L.

LCBC Capacity: The infimum of N /L over all achievable
schemes.

Capacity for 2 and 3 users is known. Capacity for K > 4
users is open.
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General Subspace Decomposition

» Our proposed scheme is based on a subspace decomposition
derived from representable polymatroid spaces.

» This enables the server to design multicast messages that
simultaneously benefit multiple users.

» Users can eliminate interference using their available side
information.
> Notation:

» Matrix: M. If columns are linear indept., they are a base.
» Space spanned by columns of M: (M).

> Intersection of subspaces: Ms 1= (g (Mk).

» Union of subspaces: M(s) := Jycs(Mg)-
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Subspace Decomposition
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General Subspace Decomposition (Cont.)

» Notation:

» Matrix: M. If columns are linear indept., they are a base.
» Space spanned by columns of M: (M).

> Intersection of subspaces: Ms := [, c5(Mg).

» Union of subspaces: M(s) := (s (Mk)-

» Rank Notation:
» Conditional Rank:

k(M3 M) = k(M) — rk(Mz) = rk(My) — rk(M5).

M; [M1|M2 [Mlz] M2|Ml] M,
M

12)
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Subspace & Basis
Given {Uy : k € [K]}, define V :=V; UV, U Vs:
> V1 ={Us: S C[K],[S] > 2}

>V, = {Uk(T\k) T CKLI[TI>3,keT}.
> V3 = {Ukz k€ [K]}

vv Vi = {Uui2s, U1z, U13, Uas},
@ @ V2 = {Uy(2,3), U21,3), Us(1,2) }»
v V3 = {Uy, Uz, Us}.
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Subspace & Basis (Cont.)
Given {Uy : k € [K]}, define V :=V; UV U Vs:

» For a subspace V' € V, LS(V) lists the "closest" subspaces
contained in V.

> An ordered tree is possible by connecting node V and
every node in LS( V).

U,

€ &7%?@ —
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Subspace Decomposition
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Subspace & Basis (Cont.)
Given {Uy : k € [K]}, define V:=V; UV, U Vst

> Basis B(V) := V' \ UgeLs(v) @- This spans V but not the
subspaces in LS( V).

» C(V)=B(V)uU (UUGLS(V) ( U)) is the set of bases
covered by V.

vv = {Bi2, B123},
@ @ = {B(123), B12, B3, B123},
v = {B1,B(123), B12, B13, B123}-
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Subspace & Basis (Cont.)

Lemma

Given any 7 C [K] and ¢ := |7 > 3, the subspaces

By(7\{x}) : k € T, have identical dimension, and any ¢ — 1 of
them are linearly independent.

@ When K = 3, [YJ24a] shows

B1(2 3)» By(1,3) and Bg(y2) are
pairwise 11near1y independent,
and have same dimension.
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Achievability
[ JeJele]

Theorem 1: Achievability via LP

Let A, > 0 be the optimizing variables, essentially coding gain
from linear coding.

» For every Us € Vi, As is assigned to its base Bg;
» For every Ug(s) € V2, A({kjus) is assigned to By s);
» For every Ug, Ax is assigned to By.




Achievability
0@00

Theorem 1: Achievability via LP

For the K-LCBC, let Uy = [V}; Vg]. The following rate is
achievable:

m1n Z )\g—l—z Z (t—1)A

= t=3 ¢
SC SeQy

Where A, are varibales associated with bases from Vi, Vs, Vs.
» For Us € V; and Ls C LC(Us),

"Sum of Cx(Us)" < rk(Us | V%), (1a)
"Sum of U CA(V)" <rk(Ls | V}), (1b)
VeLs

16 /31



Achievability
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Theorem 1: Achievability via LP

For the K-LCBC, let Uy = [V}; Vg]. The following rate is
achievable:

m1n Z )\g—l—z Z (t—1)A

= t=3 ¢
SC SeQy

Where A, are varibales associated with bases from Vi, Vs, Vs.
» For Us € V; and Ls C LC(Us),

"Sum of Cx(Us)" < rk(Us | V%), (1a)
"Sum of U CA(V)" <rk(Ls | V}), (1b)
VeLs
» For Uy(sy € V2 and Lys) € LC(Ug(s)),
"Sum of Cx(Ups))" < rk(Ugsy | Vi), (2a)
"Sumof [ ] Ci(V)" < rk(Lis) | Vi), (2b)
VELys)
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Achievability
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Theorem 1: Achievable Rate via LP

For the K-LCBC, let Uy = [V}; Vg]. The following rate is
achievable:

m1n Z )\g—l—z Z (t—1)A
- SC t= BSGQEK]

Where A, are coefficients associated with bases from Vi, Vs, Vs.
> ...

» For Uy € Vs,
"Sum of Cy(Ux)" = rk(Ug | V%) = rk(Vy), (3)

» Equality ensures all desired information is recovered.
» When K = 2 or K = 3, this LP is proved as optimal
in [SJ19] and [YJ24a], respectively.
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Achievability
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Interpreting A Variables & Coding Gain

The objective function can be rewritten as:

K
Z Uk|V/ Z Z t -1 }\5 — Z )\(3)
k=1 t=2 seql SCIK],|S|>3

» First term: Load of uncoded transmissions (serving users
individually).

» Each A, represents the coding gain from a multicast
message.
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Interpreting A Variables & Coding Gain

The objective function can be rewritten as:

K
Z Uk|V/ Z Z t -1 }\5 — Z }\(3)
k=1 t=2 Seql SCIK],|S|>3

» First term: Load of uncoded transmissions (serving users
individually).

» Each A, represents the coding gain from a multicast
message.

» MAs: Rank of (multicast or unicast when |S| = 1) message
serving |S| users, reducing load by (|S| — 1)As.

> A(s): Rank of messages where ¢ — 1 are linearly
independent, serving ¢t = |S| users, reducing load by As)-
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Example: K=4 Users
Toy Example (Index Coding):
» f=[A,B,C,D].
» User 1 wants B, knows A; User 2 wants C, knows B; User

3 wants D, knows C; User 4 wants A, knows D.
» Subspace decomposition
> U, =[A4,B],U,=[B,C],Us =[C,D],Us = [A, D].
> Bio=B, Bx=C, Ba=D, Bu=A
» Objective function

> As+30 Y (E- Dy

t=3
SCl4] seqj,

» Constraints on A,
> )\12 S Fk(U12|V/1) = I’k([A, B]) —rk
> o < rk(Us2|V3) = rk([B, B]) — rk
> All As =0 where S C [4],|S] > 2.

([B) =1,
((Bl)=o0
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Example: K=4 Users

Toy Example (Index Coding):
» f=[A,B,C,D].
» User 1 wants B, knows A; User 2 wants C, knows B; User
3 wants D, knows C; User 4 wants A, knows D.
» Subspace decomposition
> U, =[A4,B],U,=[B,C],Us =[C,D],Us = [A, D].
> Bis=B, By3=C, Bss2=D, Bjyz=A
» Objective function

> As+30 Y (E- Dy

SC[4] t=3scqt!

» Constraints on A,
> )\(123) < rk(U1(23)|V1) = rk([A]) — rk([4]) =
> Aaz2s) < rk(Uzas)|V3) = rk([4, B]) — rk([B]) =1,
> A(123 S rk(U3(12)|V3) rk([C, C]) — rk([C]) =
> A123) = A(124) = A(134) = A(234) = 0.
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Example: K=4 Users
Toy Example (Index Coding):
» f=[A,B,C,D].
» User 1 wants B, knows A; User 2 wants C, knows B; User

3 wants D, knows C; User 4 wants A, knows D.
» Subspace decomposition
> U, =[A4,B],U,=[B,C],Us =[C,D],Us = [A, D].
> Bio=B, Bx=C, Ba=D, Bu=A
» Objective function

> As+30 Y (E- Dy

t=3 scqt
SCl4] seqj,

» Constraints on A,

> A1234) < rk(U1(234)|V ) = rk([4, B]) — rk([A]) = 1,
> Azsa) < rk(Us(ize)|V3) = rk([B, C]) — rk([B]) = 1,
> X1234) < rk(Us(124)|V3) = rk([C, D]) — rk([C]) = 1,
> )\ (1234) < I’k(U4(123)|V4) = rk([A, D]) — rk([D]) = 1,
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Example: K=4 Users
Toy Example (Index Coding):
» f=[A,B,C,D].
» User 1 wants B, knows A; User 2 wants C, knows B; User

3 wants D, knows C; User 4 wants A, knows D.
» Subspace decomposition
> U, =[A4,B],U,=[B,C],Us =[C,D],Us = [A, D].
> Bio=B, Bx=C, Ba=D, Bu=A
» Objective function

> As+30 Y (E- Dy

t=3 scqt
SCl4] seqj,

» Constraints on A Ag123q) < 1, A, < 1,
“Four birds Three stones”, X = (A+ B,B+ C,C + D).
» Optimal as proved by [AK™ 18, MAIS converse].

v
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Generic LCBC Setting

» Consider a LCBC instance A, where

» uniform cache size and demand size;

» V) and Vy are generated from F,» at i.i.d. uniformly

random;

» Performance Metric

»> Find A s.t. Pr(JA*(A,) — A| <€) — 1 when n — oo.

» Since A*(A,) is always bounded, it implies EA*(A,) = A.
» [YJ24b] proves such exact A* exists when certain

conditions hold, if not, it is within a factor of 2.

» The scheme invokes asymptotic IA scheme in K-user
interference channel.
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Example: K=4 Users
Example (Generic LCBC setting)
» f=[A,B,C,D],d=4, m, =my =1,
> Vi =[vg,: 1 €[4, Vi = [vk, : 2 € [4]].
> [Vi;...; VL V... V] is (4,8) MDS code.
Subspace decomposition (z7£ is a permutation of 1234)
» B;(r) = Uj, other bases are 0.
Constraints on A,

Mgy < k(Ui V) = 1, (4a)

)\(1234) < rk(Uz(]'r‘Z)|V ) =1 (4b)

(lJT) + )\ (45¢) < rk(Uz(] z(jl ‘V ) =1, (4c)

Aggry + Agize) + Agirey < tk(Uigry, z(ye Uigrg|Vi) =1, (4d)

Solving LP, A¢jr) = %, thus the load is §. However, [YJ24D]
proves the exact load is 2.
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Conclusion

» We propose a new achievable scheme for general K-LCBC
(i.e., arbitrary number of users K).

» The scheme is based on a general subspace decomposition
derived from representable polymatroid spaces.

» It leverages linear dependencies among subspaces to enable
multicast opportunities and interference elimination,
optimizing the communication load via a linear program.

» The scheme recovers known capacity results for K =2 and
K = 3 users.
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Future Work

» Comparing the achievable rate with a converse bound to
determine optimality or sub-optimality gaps.

» Further strengthening the scheme by accounting for more
complex dependencies that may exist in the subspace
decomposition, potentially lowering the rate.

» Exploring applications to related problems, such as:

» Coded caching with linear coded placement.
» Coded caching with scalar linear function retrieval.
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